Targeting performance isolation
in an experimental testbed

Jack Lange
Assistant Professor
University of Pittsburgh

g




Workload Interference

Cross workload interference is now recognized as a
problem for consolidated cloud environments

There are currently two approaches to address it

— Modify application behaviors to be resilient to interference
effects
* E.g. Google (“The Tail at Scale” in CACM)
— Use hardware isolation to prevent workloads from interfering
* E.g. Amazon EC2 - Space sharing of workloads

Our work focuses on providing isolation at both the
hardware and System Software layers



Hardware Partitioning

* Current approaches emphasize hardware space sharing

Commodity Partition HPC Partition

e Current systems do support this, but...

* Interference still exists inside the system software
— Inherent feature of commodity systems



Multi-stack Approach

* Dynamic Resource Partitions
— Runtime segmentation of underlying hardware resources
— Assigned to specific workloads

* Dynamic Software Isolation
— Prevent interference from other workloads
— Execute on separate system software stacks
— Remove cross stack dependencies

* Implementation

— Independent system software running on isolated
resources



Multi-stack Architecture

* Allow multiple dynamically created enclaves
— Based on runtime isolation requirements
— Provides flexibility of fully independent OS/Rs

* Isolated Performance and resource management

Commodit
VM(s) ' Isolated VM(s) Consolidated Isolated

VM(s) VM Isolated
Linux/KVM Palacios VMM KVM Palacios VMM App

Palacios

_ Linux Module Resource Linux Kitten (1) Kitten (2)
Linux Kernel Interface
Hardware

Managers

Hardware



Isolation Experiments

* Goal: Measure isolation capabilities of multi-stack system

software
* Measure application performance at scale with/without co-located
workloads . o

18 + native ===
KVM

16 | co—VMM bg —_—t
native bg wnnaPunnn
14 | KVM bg

(GFLOP/s)

12

10

Throughput

N S [e)} [ee)
T

Number of Nodes

HPCG Benchmark Performance
* Smallish scale evaluation of Co-VMM architecture
* Native performance without background workloads
* Better performance with background workloads as node
count increases



Testbed Requirements

* Experiments at scale

— Evaluation of isolation approaches requires large
scale experiments of custom system software

— We need to run and measure our own OS/runtime
directly on hardware at scale

* Experimental Workloads

— Workloads exhibit varying behaviors and
sensitivities to interference

— We need access to a collection of realistic
workloads to measure and study their behaviors



Experiments at scale

* Requirements
— Ability to run custom kernel images

— Root/sudo access capabilities to insert custom
kernel modules and configure system software

— Hardware support for partitioning

* SR-IOV capable PCl devices, multi socket/NUMA
systems, IOMMUs, etc...



Experimental Workloads

* Requirements

— Ability to gather low level performance
measurements to identify interference problems
e At both the hardware and software layers
 Hardware perf counters, Linux tracepoints, etc

e Preferences

— Ability to instrument and gather performance
measurements in a centralized manner

— Library of public workloads gathered from actual
system users
* Preconfigured real world benchmarks



