Targeting performance isolation in an experimental testbed

Jack Lange Assistant Professor University of Pittsburgh

Workload Interference

- Cross workload interference is now recognized as a problem for consolidated cloud environments
- There are currently two approaches to address it
 - Modify application behaviors to be resilient to interference effects
 - E.g. Google ("The Tail at Scale" in CACM)
 - Use hardware isolation to prevent workloads from interfering
 - E.g. Amazon EC2 Space sharing of workloads
- Our work focuses on providing isolation at both the hardware and System Software layers

Hardware Partitioning

Current approaches emphasize hardware space sharing

- Current systems do support this, but...
- Interference still exists inside the system software
 - Inherent feature of commodity systems

Multi-stack Approach

- Dynamic Resource Partitions
 - Runtime segmentation of underlying hardware resources
 - Assigned to specific workloads
- Dynamic Software Isolation
 - Prevent interference from other workloads
 - Execute on separate system software stacks
 - Remove cross stack dependencies
- Implementation
 - Independent system software running on isolated resources

Multi-stack Architecture

- Allow multiple dynamically created enclaves
 - Based on runtime isolation requirements
 - Provides flexibility of fully independent OS/Rs
 - Isolated Performance and resource management

Consolidated VM(s)	Isolated VM		Isolated App
KVM	Palacios VMM		
Linux	Kitten (1)		Kitten (2)
Hardware			

Isolation Experiments

Goal: Measure isolation capabilities of multi-stack system software

Measure application performance at scale with/without co-located

workloads

HPCG Benchmark Performance

- Smallish scale evaluation of Co-VMM architecture
 - Native performance without background workloads
 - Better performance with background workloads as node count increases

Testbed Requirements

- Experiments at scale
 - Evaluation of isolation approaches requires large scale experiments of custom system software
 - We need to run and measure our own OS/runtime directly on hardware at scale
- Experimental Workloads
 - Workloads exhibit varying behaviors and sensitivities to interference
 - We need access to a collection of realistic workloads to measure and study their behaviors

Experiments at scale

Requirements

- Ability to run custom kernel images
- Root/sudo access capabilities to insert custom kernel modules and configure system software
- Hardware support for partitioning
 - SR-IOV capable PCI devices, multi socket/NUMA systems, IOMMUs, etc...

Experimental Workloads

Requirements

- Ability to gather low level performance measurements to identify interference problems
 - At both the hardware and software layers
 - Hardware perf counters, Linux tracepoints, etc

Preferences

- Ability to instrument and gather performance measurements in a centralized manner
- Library of public workloads gathered from actual system users
 - Preconfigured real world benchmarks