

www.chameleoncloud.org

CHAMELEON:

A LARGE-SCALE, RECONFIGURABLE EXPERIMENTAL ENVIRONMENT FOR CLOUD RESEARCH

Kate Keahey

keahey@anl.gov

April 21- 23, 2015

Seaport World Trade Center . Boston, MA

Enabling Technology. Leveraging Data. Transforming Medicine.

APRIL 22, 2015

CLOUD RESEARCH CHALLENGES

Research at Scale: Big Data, Big Compute, Big Instrument

Collaboration at Scale

Short Response at Large Scale

Cloud Data Security

CHAMELEON: A FLEXIBLE AND POWERFUL EXPERIMENTAL INSTRUMENT

- ► Large-scale: "Big Data, Big Compute, Big Instrument research"
 - ► ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network
- Reconfigurable: "As close as possible to having it in your lab"
 - From bare metal reconfiguration to clouds
 - Support for repeatable and reproducible experiments
- Connected: "One stop shopping for experimental needs"
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users
- Complementary: "Can't do everything ourselves"
 - ► Complementing GENI, Grid'5000, and other experimental testbeds

CHAMELEON HARDWARE

To UTSA, GENI, Future Partners

Switch

Standard **Cloud Unit** 42 compute 4 storage x2

Core Services Front End and Data **Mover Nodes**

504 x86 Compute Servers 48 Dist. Storage Servers 102 Heterogeneous Servers **16 Mgt and Storage Nodes**

Chameleon Core Network

100Gbps uplink public network (each site)

Chicago Austin

SCUs connect to core and fully connected to each other

Switch

Standard

Cloud Unit

42 compute

4 storage

x10

Core Services

3.6 PB Central File Systems, Front End and Data Movers

Heterogeneous **Cloud Units Alternate Processors**

and Networks

CAPABILITIES AND SUPPORTED RESEARCH

Development of new models, algorithms, platforms, auto-scaling HA, etc., innovative application and educational uses

Persistent, reliable, shared clouds

Repeatable experiments in new models, algorithms, platforms, auto-scaling, high-availability, cloud federation, etc.

Isolated partition, Chameleon Appliances

Virtualization technology (e.g., SR-IOV, accelerators), systems, networking, infrastructure-level resource management, etc.

Isolated partition, bare metal reconfiguration: OpenStack and Grid'5000

EXPERIMENTAL WORKFLOW

SELECTING AND VERIFYING RESOURCES

- Complete, fine-grained and up-to-date representation
- Machine parsable, enables match making
- Versioned
 - "What was the drive on the nodes I used 6 months ago?"
- Dynamically Verifiable
 - ▶ Does reality correspond to description? (e.g., failures)
- ► Grid'5000 Registry
 - Automated resource description, automated export to RM
- ► G5K-checks
 - Run at boot, acquire information, compare with resource catalog description

PROVISIONING RESOURCES

- ► Resource leases
- Allocating a range of resources
 - Different node types, switches, etc.
- Multiple environments in one lease
- Advance reservations (AR)
 - Sharing resources across time
- ► Eventually: match making, Gantt chart displays

Extensions to support working with more resources, match making, and displays

CONFIGURE AND INTERACT

- ► Map multiple appliances to a lease
- Allow deep reconfiguration (incl. BIOS)
- ▶ Snapshotting
- Efficient appliance deployment
- ► Handle complex appliances
 - ▶ Virtual clusters, cloud installations, etc.
- ► Interact: reboot, power on/off, access to console
- Shape experimental conditions
- OpenStack Ironic, Glance, and meta-data servers

MONITORING

- Enables users to understand what happens during the experiment
- ► Types of monitoring
 - User resource monitoring
 - ► Infrastructure monitoring (e.g., PDUs)
 - Custom user metrics
- ► High-resolution metrics
- Easily export data for specific experiments
- OpenStack Ceilometer

PROJECT SCHEDULE

- ► Now: FutureGrid@Chameleon
 - Chameleon Technology Preview
 - OpenStack FutureGrid-style cloud
 - ▶ 43 projects, 81 users, 29 institutions
- ► <u>Summer 2015</u>: New hardware: large-scale homogenous partitions available to Early Users
- ► Fall 2015: Large-scale homogenous partitions and bare metal reconfiguration generally available
- ► 2015/2016: Refinements to experiment management capabilities, higher level capabilities
- ► Fall 2016: Heterogeneous hardware available

GET ENGAGED

- www.chameleoncloud.org
- Use the FutureGrid@Chameleon KVM-based cloud
- ► Technology Preview on FutureGrid hardware
- ► Early User Program
 - Committed users, driving and testing new capabilities, enhanced level of support
 - Sign up to get access to new hardware

TEAM

Kate Keahey Chameleon Pl Science Director, Software Development

Paul Rad Industry Liason

Joe Mambretti Programmable networks

Warren Smith Director of Operations

Dan Stanzione **Facilities Director**

THE TESTBED IS THERE – "JUST" ADD RESEARCH!

- Large-scale, responsive experimental testbed
 - ▶ Targeting critical research problems at scale
- ► Reconfigurable environment
 - Support use cases from bare metal to production clouds
- One-stop shopping for experimental needs
 - ▶ Trace and Workload Archive
- Engage the community
 - ► The most important element of any experimental testbed is users and the research they work on

